Title: Clinical Investigations

Authoring Group: Study Group 5

Endorsed by: The Global Harmonization Task Force

Date: February 12, 2010

The document herein was produced by the Global Harmonization Task Force, which is comprised of representatives from medical device regulatory agencies and the regulated industry. The document is intended to provide *non-binding* guidance for use in the regulation of medical devices, and has been subject to consultation throughout its development.

There are no restrictions on the reproduction, distribution or use of this document; however, incorporation of this document, in part or in whole, into any other document, or its translation into languages other than English, does not convey or represent an endorsement of any kind by the Global Harmonization Task Force.

Copyright © 2010 by the Global Harmonization Task Force
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Scope</td>
<td>4</td>
</tr>
<tr>
<td>References</td>
<td>5</td>
</tr>
<tr>
<td>Definitions</td>
<td>6</td>
</tr>
<tr>
<td>General Principles When Considering the Need for a Clinical Investigation</td>
<td>7</td>
</tr>
<tr>
<td>General Principles of Clinical Investigation Design</td>
<td>8</td>
</tr>
<tr>
<td>Ethical Considerations for Clinical Investigations</td>
<td>10</td>
</tr>
</tbody>
</table>
Preface

The document herein was produced by the Global Harmonization Task Force, a voluntary group of representatives from medical device regulatory agencies and the regulated industry. The document is intended to provide non-binding guidance for use in the regulation of medical devices, and has been subject to consultation throughout its development.

There are no restrictions on the reproduction, distribution or use of this document; however, incorporation of this document, in part or in whole, into any other document, or its translation into languages other than English, does not convey or represent an endorsement of any kind by the Global Harmonization Task Force.
1 Introduction

What is clinical investigation?

A clinical investigation is defined as “any systematic investigation or study in or on one or more human subjects, undertaken to assess the safety and/or performance of a medical device.” (SG5/N1:2007).

The undertaking of a clinical investigation is a scientific process that represents one method of generating clinical data.

What is the objective of a clinical investigation?

The objective of a clinical investigation is to assess the safety and performance/efficacy of the device in question and evaluate whether the device is suitable for the purpose(s) and the population(s) for which it is intended (ISO 14155-1:2003).

How is a clinical investigation conducted?

ISO 14155-1:2003 Clinical Investigation of Medical Devices for Human Subjects - General Requirements details the general requirements for the conduct of clinical investigations and ISO 14155-2:2003 Clinical Investigation of Medical Devices for Human Subject - Clinical Investigation Plan contains detailed information about the procedure and contents of a clinical investigation plan. Clinical investigations must take into account scientific principles underlying the collection of clinical data along with accepted ethical standards surrounding the use of human subjects. The clinical investigation objectives and design should be documented in the clinical investigation plan.

2 Scope

The primary purpose of this document is to provide guidance in relation to:

- when a clinical investigation should be undertaken for a medical device to demonstrate compliance with the relevant Essential Principles (see GHTF/SG1/N041 – “Essential Principles of Safety and Performance of Medical Devices”); and
- the general principles of clinical investigation involving medical devices.

Given the wide diversity of medical devices and their associated risks, this document is not intended to provide comprehensive guidance for clinical investigations of specific medical devices.
The guidance contained within this document is intended to apply to medical devices generally and combination products regulated as medical devices. It is not intended to cover *in vitro* diagnostic medical devices. Additionally, this document was drafted primarily to address the use of Clinical Investigations to support a marketing authorization application. Some aspects of this document may apply to studies conducted following commercial release of a device. Future GHTF documents will specifically address post-market clinical follow-up studies.

3 References

GHTF final documents

SG1/N011:2008 *Summary Technical Documentation for Demonstrating Conformity to the Essential Principles of Safety and Performance of Medical Devices (STED)*

SG1/N029:2005 *Information Document Concerning the Definition of the Term “Medical Device”*

SG1/N041:2005 *Essential Principles of Safety and Performance of Medical Devices*

SG1/N040:2006 *Principles of Conformity Assessment for Medical Devices*

SG1/N43:2005 *Labelling for Medical Devices*

SG5/N1:2007 *Clinical Evidence – Key definitions and Concepts*

SG5/N2:2007 *Clinical Evaluation*

International standards

ISO 14155-1: 2003 *Clinical investigation of medical devices for human subjects – Part 1 General requirements*

ISO 14155-2: 2003 *Clinical investigation of medical devices for human subjects – Part 2 Clinical investigation plans*

ISO 14971: 2007 *Application of risk management to medical devices*

Other References

World Medical Association – Declaration of Helsinki - Ethical principles for medical research involving human subjects
4 Definitions

Clinical Data: Safety and/or performance information that are generated from the clinical use of a medical device.

Clinical Evaluation: The assessment and analysis of clinical data pertaining to a medical device to verify the clinical safety and performance of the device when used as intended by the manufacturer.

Clinical Evidence: The clinical data and the clinical evaluation report pertaining to a medical device.

Clinical Investigation: Any systematic investigation or study in or on one or more human subjects, undertaken to assess the safety and/or performance of a medical device.

Clinical Investigation Plan: Document that states the rationale, objectives, design and proposed analysis, methodology, monitoring, conduct and record-keeping of the clinical investigation.

Clinical Performance: The ability of a medical device to achieve its intended purpose as claimed by the manufacturer.

Clinical Safety: The absence of unacceptable clinical risks, when using the device according to the manufacturer’s Instructions for Use.

Conformity Assessment: The systematic examination of evidence generated and procedures undertaken by the manufacturer, under requirements established by the Regulatory Authority, to determine that a medical device is safe and performs as intended by the manufacturer and, therefore, conforms to the Essential Principles of Safety and Performance for Medical Devices (SG1/N04I:2005).

Endpoint: Indicators measured or determined to assess the objectives of a clinical investigation, prospectively specified in the clinical investigation plan. (ISO 14155, modified)

Residual Risk: Risk remaining after risk control measures have been taken (ISO 14971).

Risk Management: The systematic application of management policies, procedures and practices to the tasks of analysing, evaluating, controlling and monitoring risk (ISO 14971).

All definitions are developed by GHTF SG5 except where noted.
5 General Principles When Considering the Need for a Clinical Investigation

When should a clinical investigation be undertaken?

Clinical investigations are necessary to provide the data not available through other sources (such as literature or preclinical testing) required to demonstrate compliance with the relevant Essential Principles (including safety, clinical performance and acceptability of risk/benefit ratio associated with its use). When a clinical investigation is conducted, the data obtained is used in the clinical evaluation process and is part of the clinical evidence for the device (see GHTF/SG5/N2 – “Clinical Evaluation”).

For long established technologies, clinical investigation data that might be required for novel technologies may not be necessary. The available clinical data in the form of, for example, published literature, reports of clinical experience, post-market reports and adverse event data may, in principle, be adequate to establish the safety and performance of the device, provided that new risks have not been identified, and that the intended use(s)/purpose(s) has/have not changed.

What are the crucial steps in clarifying the need for clinical investigations?

1. Identifying relevant clinical Essential Principles (for example, specifics of safety, clinical performance, acceptability of risk/benefit-ratio) for the device and its intended use/purpose(s) (see GHTF/SG1/N041 – Essential Principles of Safety and Performance of Medical Devices);

2. Performing risk management (ISO 14971) activities will help in identifying the clinical data necessary to address residual risks and aspects of clinical performance not completely resolved by available information e.g. design solutions, preclinical and material/technical evaluation, conformity with relevant standards, labelling, etc.;

3. Conducting a proper clinical evaluation will demonstrate which clinical data are necessary and can be adequately contributed to by sources such as literature searching, prior clinical investigations, clinical experience, or clinical data available from comparable devices, and which clinical data should be generated from clinical investigation(s). Available clinical data for comparable devices should be carefully examined for comparability and adequacy (see SG5/N2:2007 Clinical Evaluation).

Note: This exercise is applicable for the introduction of a new device as well as for planned changes of a device, its intended use and/or claims.
What is the role of risk analysis?

A properly conducted risk analysis is essential in determining what clinical evidence may be needed for a particular device (see ISO 14971). A clinical investigation is generally required when the currently available data are insufficient to demonstrate conformity with the Essential Principles. This would be the case when the manufacturer’s risk analysis and the clinical evaluation of a medical device for a particular intended use, including new claims, shows that there are residual risks, including aspects of clinical performance, that have not been adequately addressed by the available data.

As described in ISO 14971, “residual risk” is the risk remaining after risk control measures have been taken. Risk control measures include inherent safety by design, protective measures in the medical device itself or in the manufacturing process, and information for safety. The decision to use a medical device in the context of a clinical procedure requires the residual risk to be balanced against the anticipated benefits of the procedure. A clinical investigation may be required to further elucidate the risk/benefit ratio in a defined patient population.

Where uncertainty exists as to whether current data are sufficient to demonstrate conformity with the Essential Principles, discussion with the relevant regulatory authorities or conformity assessment bodies may be appropriate.

6 General Principles of Clinical Investigation Design

Any clinical investigation must:

- be based on the results of the clinical evaluation process;
- follow a proper risk management procedure to avoid undue risks;
- be compliant with all relevant legal and regulatory requirements;
- be appropriately designed (see below);
- follow appropriate ethical principles (see Section 7).

The design of the clinical investigation, including the study objectives and statistical considerations, should provide the clinical data necessary to address the residual risks, including aspects of clinical performance. Some factors that may influence the extent of data requirements include, but are not limited to, the following:

- type of device and/or regulatory classification;
- novel technology/relevant previous experience;
- clinical application/indications;
- nature of exposure to the product, e.g.: surface contact, implantation, ingestion;
• risks inherent in the use of the product, e.g.: risk associated with the procedure;
• performance claims made in the device labeling (including instructions for use) and/or promotional materials;
• component materials or substances;
• disease process (including severity) and patient population being treated;
• demographic, geographic and cultural considerations (e.g.: age, ethnicity, gender, etc.);
• potential impact of device failure;
• period of exposure to the device;
• expected lifetime of the device;
• availability of alternative treatments and current standard of care; and
• ethical considerations.

Considerations for Device Study Designs

Some of the factors that need to be considered in the study design include, for example:

• clear statement of objectives
• appropriate subject population(s)
• minimization of bias (e.g., randomization, blinding)
• identification of confounding factors (e.g., concurrent medications, co-morbidities)
• choice of appropriate controls (e.g., cohort, sham, historical), where necessary
• design configuration (e.g., parallel, crossover, factorial)
• type of comparison (e.g., superiority, non-inferiority, equivalence)

Investigations should be planned in such a way as to maximize the clinical relevance of the data while minimizing confounding factors. Possible study designs include:

• randomized controlled trials
• cohort studies
• case-control studies
• case series

These are further explained in Appendix C of the document on *Clinical Evaluation* (GHTF/SG5/N2:2007)
In designing the study, statistical considerations should be prospectively specified and be based on sound scientific principles and methodology. Care must be taken in developing a statistical plan that includes consideration of, for example, the following:

- clinically relevant endpoints
- statistical significance levels, power
- sample size justification
- analysis methodology (including sensitivity and poolability analysis)

The design should ensure that the statistical evaluation derived from the investigation reflects a meaningful, clinically significant outcome.

Discussion with the relevant regulatory authorities or conformity assessment bodies may be appropriate when there is uncertainty as to whether the proposed clinical investigational plan is sufficient.

Conduct of Clinical Investigations

A properly conducted clinical investigation, including compliance to the clinical investigation plan and local laws and regulations, ensures the protection of human subjects, the integrity of the data and that the data obtained is acceptable for the purpose of demonstrating conformity to the Essential Principles. ISO 14155 outlines good clinical practice for clinical investigations of medical devices.

Final Study Report

The outcome of a clinical investigation should be documented in a final study report. This then forms part of the clinical data that is included in the clinical evaluation process and ultimately becomes integrated into the clinical evaluation report (see GHTF SG5/N2:2007) for the purposes of conformity assessment.

7 Ethical Considerations for Clinical Investigations

As a general principle, “the rights, safety and wellbeing of clinical investigation subjects shall be protected consistent with the ethical principles laid down in the Declaration of Helsinki” (ISO 14155).

It is ethically important in deciding to conduct a clinical investigation that it should generate new data and answer specific safety and/or performance questions that remain unanswered by the current body of knowledge. The desire to protect human subjects from unnecessary
or inappropriate experimentation must be balanced with the need to protect public health through the use of clinical investigations where they are indicated. In all cases, however, care must be taken to ensure that the necessary data are obtained through a scientific and ethical investigational process that does not expose subjects to undue risks or discomfort. The rights, safety and well-being of subjects are paramount, and appropriate trial design and conduct is essential to generate meaningful data.