Title: Essential Principles of Safety and Performance of Medical Devices and IVD Medical Devices

Authoring Group: IMDRF Good Regulatory Review Practices

Date: 18 January 2018
Table of Contents

33 Introduction .. 4
35 1.0 Scope .. 4
36 2.0 References .. 4
37 3.0 Definitions.. 6
39 4.0 Safety and Performance of Medical Devices – General Principles................................. 12
40 5.0 Essential Principles Applicable to all Medical Devices and IVD Medical Devices 12
41 6.0 Essential Principles Applicable to Medical Devices other than IVD Medical Devices 25
42 7.0 Essential Principles Applicable to IVD Medical Devices .. 26
43 Annex A: Use of Standards in Meeting Essential Principles .. 28
44 Annex B: Guidance on Essential Principles ... 31
Preface

The document herein was produced by the International Medical Device Regulators Forum (IMDRF), a voluntary group of medical device regulators from around the world. The document has been subject to consultation throughout its development.

There are no restrictions on the reproduction, distribution or use of this document; however, incorporation of this document, in part or in whole, into any other document, or its translation into languages other than English, does not convey or represent an endorsement of any kind by the International Medical Device Regulators Forum.
Introduction

The purpose of this IMDRF guidance is to harmonize the documentation and procedures that are used to assess whether a medical device conforms to the regulations that apply in each jurisdiction. The worldwide adoption of fundamental design and manufacturing requirements for medical devices that, when met, provide assurance the device is safe and performs as intended, offers significant benefits to the manufacturer, user, patient or consumer, and to Regulatory Authorities. Eliminating differences between jurisdictions decreases the cost of gaining regulatory compliance and allows patients earlier access to new technologies and treatments.

This document has been developed to encourage and support global convergence of regulatory systems. It is intended for use by Regulatory Authorities (RAs), Conformity Assessment Bodies (CABs) and industry, and will provide benefits in establishing, in a consistent way, an economic and effective approach to the control of medical devices in the interest of public health. It seeks to strike a balance between the responsibilities of RAs to safeguard the health of their citizens and their obligations to avoid placing unnecessary burdens upon the industry.

The manufacturer of a medical device and IVD medical device is expected to design and manufacture a product that is safe and effective throughout its life-cycle. This guidance document describes fundamental design and manufacturing requirements, referred to as ‘Essential Principles of Safety and Performance’ that, when met, indicate a medical device is safe and performs as intended. Essential principles of safety and performance provide broad, high-level, criteria for design, production, and postproduction (including post-market surveillance) throughout the life-cycle of all medical devices and IVD medical devices, ensuring their safety and performance. Depending on the Regulatory Authority having jurisdiction and the particular medical device or IVD medical device there may be additional requirements that may need to be met.

This document supersedes an earlier version produced under the Global Harmonization Task Force (GHTF) with the same title dated November 2, 2012 (GHTF/SG1/N68:2012).

1.0 Scope

This document applies to all medical devices and IVD medical devices, and is intended to identify and describe essential principles of safety and performance which need to be considered during the design and manufacturing process. Depending on the particular medical device or IVD medical device, some of the essential principles of safety and performance may not apply. In those cases, justifications should be provided for their exclusion.

2.0 References

- IMDRF/GRRP WG/N040:2017 Competence, Training, and Conduct Requirements for Regulatory Reviewers
- GHTF/SG1/N78:2012 Principles of Conformity Assessment for Medical Devices.
• GHTF/SG1/N70:2011 Label and Instructions for Use for Medical Devices.
• GHTF/SG1/N044:2008 Role of Standards in the Assessment of Medical Devices.
• GHTF/SG1/N055:2009 Definitions of the Terms Manufacturer, Authorised Representative, Distributor and Importer
• GHTF/SG1/N046:2008 Principles of Conformity Assessment for In Vitro Diagnostic (IVD) Medical Devices
• GHTF/SG1/N071:2012 Definition of the Terms ‘Medical Device’ and ‘In Vitro Diagnostic (IVD) Medical Device’
• GHTF/SG5/N1R8:2007 Clinical Evidence – Key Definitions and Concepts
• GHTF/SG5/N2R8:2007 Clinical Evaluation
• GHTF/SG5/N3:2010 Clinical Investigations
• GHTF/SG5/N6:2012 Clinical Evidence for IVD Medical Devices - Key Definitions and Concepts
• GHTF/SG5/N8:2012 Clinical Performance Studies for In Vitro Diagnostic Medical Devices

Standards

• ISO 14971 Medical Devices – Application of Risk Management to Medical Devices
• ISO 13485: 2016 Medical Devices – Quality Management Systems – Requirements for Regulatory Purposes
• ISO 16142:2016 Medical Devices – Recognized Essential Principles of Safety and Performance of Medical Devices – Part 1: General Essential Principles and Additional Specific Essential Principles for all non-IVD Medical Devices and Guidance on the Selection of Standards
• ISO 11135 Sterilization of Health-Care Products -- Ethylene oxide -- Requirements for the Development, Validation and Routine Control of a Sterilization Process for Medical Devices
• ISO 11137 Sterilization of Health Care Products -- Radiation
• ISO 11138 Sterilization of Health Care Products -- Biological indicators
• ISO 11140 Sterilization of Health Care Products -- Chemical indicators
• ISO 11607 Packaging for Terminally Sterilized Medical Devices
• ISO 11737 Sterilization of Medical Devices -- Microbiological Methods
• ISO 17665 Sterilization of Health Care Products - Moist Heat
• ISO 14937 Sterilization of Health Care Products - General Requirements for Characterization of a Sterilizing Agent and the Development, Validation and Routine Control of a Sterilization Process for Medical Devices
• ISO 13408 Aseptic Processing of Health Care Products
• ISO 10993 Biological Evaluation of Medical Devices
• ISO 23640 In Vitro Diagnostic Medical Devices - Evaluation of stability of in vitro diagnostic reagents
• ISO 14155 Clinical Investigation of Medical Devices for Human Subjects - Good clinical practice
3.0 Definitions

3.1 Analytical Performance of an IVD Medical Device: The ability of an IVD medical device to detect or measure a particular analyte. (GHTF/SG5/N6:2012)

3.2 Conformity Assessment Body (CAB): A body other than a Regulatory Authority engaged in determining whether the relevant requirements in technical regulations or standards are fulfilled. (IMDRF/GRRP WG/N040:2017)

3.3 Clinical Data: Safety and/or performance information that are generated from the clinical use of a medical device. (GHTF/SG5/N1R8:2007)
3.4 **Clinical Evaluation:** The assessment and analysis of clinical data pertaining to a medical device to verify the clinical safety and performance of the device when used as intended by the manufacturer. (GHTF/SG5/N1R8:2007)

3.5 **Clinical Evidence:** The clinical data and the clinical evaluation report pertaining to a medical device. (GHTF/SG5/N1R8:2007)

3.6 **Clinical Evidence for an IVD Medical Device:** All the information that supports the scientific validity and performance for its use as intended by the manufacturer. (GHTF/SG5/N6:2012)

3.7 **Clinical Investigation:** Any systematic investigation or study in or on one or more human subjects, undertaken to assess the safety and/or performance of a medical device. Explanation: This term is synonymous with ‘clinical trial’ and ‘clinical study’. (GHTF/SG5/N1R8)

3.8 **Clinical Performance:** The ability of a medical device to achieve its intended purpose as claimed by the manufacturer. (GHTF/SG5/N1R8:2007)

3.9 **Clinical Performance of an IVD Medical Device:** The ability of an IVD medical device to yield results that are correlated with a particular clinical condition/physiological state in accordance with target population and intended user. (GHTF/SG5/N6:2012)

3.10 **Expected Life of a Device:** The time that a device is expected to remain functional after it is placed into use. Certain implanted devices have specified "end of life" (EOL) dates. Other devices are not labeled as to their respective EOL, but are expected to remain operational through activities such as maintenance, repairs, or upgrades, for an estimated period of time.

3.11 **Expiry Date/Expiration Date:** Upper limit of the time interval during which the performance characteristics of a material stored under specified conditions can be assured.

NOTE 1: This also applies to medical devices whose physical, chemical or functional properties are maintained during a specified and known period, such as for capital equipment.

NOTE 2: Expiry dates are assigned to IVD reagents, calibrators, control materials and other components by the manufacturer, based on experimentally determined stability properties.

(Adapted from ISO 18113-1:2009)

3.12 **Harm:** Physical injury or damage to the health of people, or damage to property or the environment. (ISO/IEC Guide 51:2014)

3.14 **Intended Use / Intended Purpose:** The objective intent of the manufacturer regarding the use of a product, process or service as reflected in the specifications, instructions and information provided by the manufacturer. (GHTF/SG1/N77:2012)

3.15 **Instructions for Use:** Information provided by the manufacturer to inform the device user of the medical device’s intended purpose and proper use and of any precautions to be taken. (GHTF/SG1/N70:2011)

3.16 **In Vitro Diagnostic (IVD) Medical Device:** ‘In Vitro Diagnostic (IVD) medical device’ means a medical device, whether used alone or in combination, intended by the manufacturer for the in-vitro examination of specimens derived from the human body solely or principally to provide information for diagnostic, monitoring or compatibility purposes.

NOTE 1: IVD medical devices include reagents, calibrators, control materials, specimen receptacles, software, and related instruments or apparatus or other articles and are used, for example, for the following test purposes: diagnosis, aid to diagnosis, screening, monitoring, predisposition, prognosis, prediction, determination of physiological status.

NOTE 2: In some jurisdictions, certain IVD medical devices may be covered by other regulations.

(GHTF/SG1/N071:2012)

3.17 **Lay Person:** Individual who does not have formal training in a relevant field or discipline.

(GHTF/SG1/N045:2008)

NOTE 1: Requirements for lay person(s) may also apply to self-testing for a medical device or IVD medical device.

NOTE 2: For an IVD medical device used outside of a laboratory setting, the user of the IVD medical device will be considered a lay user.

NOTE 3: For an IVD medical device for self-collection/self-testing, a self-tester is considered a lay user.

3.18 **Label:** Written, printed, or graphic information either appearing on the medical device itself, or on the packaging of each unit, or on the packaging of multiple devices.

(GHTF/SG1/N70:2011)

NOTE: Definition above refers to the human readable label.

3.19 **Labeling:** the label, instructions for use, and any other information that is related to identification, technical description, intended purpose and proper use of the medical device, but excluding shipping documents. (GHTF/SG1/N70:2011)

NOTE: Labeling can be in printed or electronic format.

3.20 **Life-Cycle:** All phases in the life of a medical device, from the initial conception to final decommissioning and disposal. (ISO/IEC Guide 51:2014)
3.21 Manufacturer: “Manufacturer” means any natural or legal person\(^1\) with responsibility for design and/or manufacture of a medical device with the intention of making the medical device available for use, under his name; whether or not such a medical device is designed and/or manufactured by that person himself or on his behalf by another person(s).

\(^1\) The term “person” that appears here and in the other definitions of this document, includes legal entities such as a corporation, a partnership or an association.

3.22 Medical Device: Any instrument, apparatus, implement, machine, appliance, implant, reagent for in vitro use, software, material or other similar or related article, intended by the manufacturer to be used, alone or in combination, for human beings, for one or more of the specific medical purpose(s) of:

- diagnosis, prevention, monitoring, treatment or alleviation of disease,
- diagnosis, monitoring, treatment, alleviation of, or compensation for, an injury,
- investigation, replacement, modification, or support of the anatomy, or of a physiological process,
- supporting or sustaining life,
- control of conception,
- cleaning, disinfection or sterilization of medical devices,
- providing information by means of in vitro examination of specimens derived from the human body;

and does not achieve its primary intended action by pharmacological, immunological, or metabolic means, in or on the human body, but which may be assisted in its intended function by such means.

Note: Products which may be considered to be medical devices in some jurisdictions but not in others include:

- disinfection substances,
- aids for persons with disabilities,
- devices incorporating animal and/or human tissues,
- devices for in-vitro fertilization or assisted reproduction technologies.

(As adapted from GHTF/SG1/N071:2012)

NOTE 1: For clarification purposes, in certain regulatory jurisdictions, devices for cosmetic/aesthetic purposes are also considered medical devices.

NOTE 2: For clarification purposes, in certain regulatory jurisdictions, the commerce of devices incorporating human tissues is not allowed.
3.23 Near-Patient Testing: Testing that is performed near a patient and outside of centralized laboratory testing facilities.

NOTE 1: This is not intended to refer to sample collection procedures only.

NOTE 2: This may be referred to as Point of Care Testing.

3.24 Packaging: Product to be used for the containment, protection, handling, delivery, storage, transport and presentation of goods, from raw materials to processed goods, from the producer to the user or consumer, including processor, assembler or other intermediary.

(ISO 21067-1:2016)

3.25 Patient: An individual under the care of a healthcare provider who may benefit from the action of a medical device. A patient may also be a user of a medical device.

3.26 Performance: The ability of a medical device to achieve its intended purpose as stated by the manufacturer. Performance may include both clinical and technical aspects.

3.27 Performance Evaluation of an IVD Medical Device: Assessment and analysis of data to establish or verify the scientific validity, the analytical and, where applicable, the clinical performance of an IVD medical device.

3.28 Performance of an IVD Medical Device: The ability of an IVD medical device to achieve its intended use/intended purpose as claimed by the manufacturer. The performance of an IVD medical device consists of the analytical and, where applicable, the clinical performance supporting the intended use of the IVD medical device.

(GHTF/SG5/N6:2012)

3.29 Recognized Standards: Standards deemed to offer the presumption of conformity to specific essential principles of safety and performance. (GHTF/SG1/N78:2012)

3.30 Regulatory Authority (RA): A government body or other entity that exercises a legal right to control the use or sale of medical devices within its jurisdiction, and that may take enforcement action to ensure that medical products marketed within its jurisdiction comply with legal requirements. (IMDRF/GRRP WG/N040:2017)

3.31 Risk: Combination of the probability of occurrence of harm and the severity of that harm. (ISO/IEC Guide 51:2014)

3.34 **Risk Evaluation**: Procedure based on the risk analysis to determine whether tolerable risk has been exceeded. (ISO/IEC Guide 51:2014)

3.36 **Self-Testing**: A medical device or IVD medical device used by a lay person who is responsible for collecting the data or specimen, by themselves and on themselves, relying solely on the instructions provided by the manufacturer. This use can also include performing the test and interpreting the results by themselves and on themselves.

3.37 **Shelf-Life**: Period of time until the expiry date during which a medical device in its original packaging maintains its stability under the storage conditions specified by the manufacturer.

NOTE: Stability (3.36) and expiry date (3.17) are related concepts

(Adapted from ISO 18113-1:2009)

3.38 **Stability**: Ability of a medical device and IVD medical device to maintain its performance characteristics within the manufacturer’s specifications.

NOTE 1: Stability applies to
- Sterile and non-sterile medical devices whose physical, chemical or functional properties may be altered or compromised over a stated time interval;
- IVD reagents, calibrators and controls, when stored, transported and used in the conditions specified by the manufacturer,
- Reconstituted lyophilized materials, working solutions and material removed from sealed containers, when prepare, used and stored according to the manufacturer’s instructions for use,
- Measuring instruments or measuring systems after calibration.

NOTE 2 Stability of an IVD reagent or measuring system is normally quantified with respect to time
- In terms of the duration of a time interval over which a measured property changes by a stated amount or
- In terms of the change of a property under specified conditions.

(Adapted from ISO 18113-1:2009)

3.39 **State of the Art**: Developed stage of technical capability at a given time as regards products, processes and services, based on the relevant consolidated findings of science, technology and experience. (ISO/IEC Guide 2:2004)

3.40 **User**: The person, professional or lay, who uses a medical device. The patient may be that user. (GHTF/SG1/N070:2011)
4.0 Safety and Performance of Medical Devices – General Principles

A manufacturer of a medical device and IVD medical device must design and manufacture a product that is safe and performs as intended throughout its life cycle. This guidance document describes fundamental design and manufacturing requirements, referred to as ‘Essential Principles of Safety and Performance’, to ensure this outcome. This document is structured to provide fourteen essential principles that apply to all medical devices including IVD medical devices (Section 5) and is then separated into two sections, one for essential principles applying to medical devices other than IVD medical devices (Section 6) and the other for essential principles that only apply to IVD medical devices (Section 7).

The medical device and IVD medical device manufacturer’s design and manufacturing activities should be under the control of its quality management system. Conformity of the device to all the applicable Essential Principles will be demonstrated and assessed according to procedures designated by the Regulatory Authority and described in other GHTF and IMDRF guidances.

The requirements in this document to reduce risks as far as possible and appropriate means the reduction of risks as low as reasonably practicable (as interpreted by the Regulatory Authority) without adversely affecting the benefit-risk determination.

5.0 Essential Principles Applicable to all Medical Devices and IVD Medical Devices

The essential design and manufacturing principles listed in this Section are applicable to medical devices and IVD medical devices.

5.1 General

5.1.1 Medical devices and IVD medical devices should achieve the performance intended by their manufacturer and should be designed and manufactured in such a way that, during normal conditions of use, they are suitable for their intended purpose taking account of the generally acknowledged state of the art. They should be safe and perform as intended and should not compromise the clinical condition or the safety of patients, or the safety and health of users or, where applicable, other persons.

5.1.2 Manufacturers should establish, implement, document and maintain a risk management system to ensure the ongoing quality, safety and performance of the medical device and IVD medical device. Risk management should be understood as a continuous iterative process throughout the entire lifecycle of a medical device and IVD medical device, requiring regular systematic updating. In carrying out risk management manufacturers should:
a) establish and document a risk management plan for each medical device and IVD medical device;

b) identify and analyze the known and foreseeable hazards associated with each medical device and IVD medical device;

c) estimate and evaluate the risks associated with, and occurring during, the intended use and during reasonably foreseeable misuse;

d) eliminate or control the risks referred to in point (c) in accordance with the requirements of points 5.1.3 and 5.1.4 below;

e) evaluate the impact of information from the production phase and, in particular, from the post-market surveillance system, on hazardous situations and the frequency of occurrence thereof, on estimates of their associated risks, as well as on the overall risk, benefit-risk determination and risk acceptability; and

f) based on the evaluation of the impact of the information referred to in point (e), if necessary amend control measures in line with the requirements of points 5.1.3 and 5.1.4 below.

5.1.3 Risk control measures and outcomes adopted by manufacturers for the design and manufacture of the medical device and IVD medical device should conform to safety principles, taking account of the generally acknowledged state of the art. When risk reduction is required, manufacturers should control risks so that the residual risk associated with each hazard as well as the overall residual risk is judged acceptable. In selecting the most appropriate solutions, manufacturers should, in the following order of priority:

a) eliminate or reduce risks as far as possible and appropriate through safe design and manufacture;

b) where appropriate, take adequate protection measures, including alarms if necessary, in relation to risks that cannot be eliminated;

c) inform all users of any residual risks; and

d) provide information for safety (warnings/precautions/contra-indications) and, where appropriate, training to users.

5.1.4 In eliminating or reducing risks related to use, the manufacturer should:

a) reduce, as far as possible and appropriate, the risks related to the features of the medical device and IVD medical device and the environment in which the medical device and IVD medical device are intended to be used (e.g. ergonomic features, tolerance to dust and humidity) and

b) give consideration to the technical knowledge, experience, education, training and use environment and, where applicable, the medical and physical conditions of intended users.

5.1.5 The characteristics and performance of a medical device and IVD medical device should not be adversely affected to such a degree that the health or safety of the patient and the user and, where applicable, of other persons are compromised during the expected life of the device, as specified by the manufacturer, when the medical device and IVD medical
device is subjected to the stresses which can occur during normal conditions of use and
has been properly maintained and calibrated (if applicable) in accordance with the
manufacturer’s instructions.

5.1.6 Medical devices and IVD medical devices should be designed, manufactured and
packaged in such a way that their characteristics and performance are not adversely
affected by transport and storage, for example, through fluctuations of temperature and
humidity, taking account of the instructions and information provided by the
manufacturer. The performance and sterility of the medical device and IVD medical
device should be sufficiently maintained throughout any shelf-life specified by the
manufacturer.

5.1.7 Medical devices and IVD medical devices should have the stability necessary to maintain
essential performance conditions in a period of time and conditions previously
established during the shelf-life, during the time of use after being opened (for IVDs,
including after being installed in the instrument), and during transportation or dispatch
when under conditions other than storage conditions.

5.1.8 All known and foreseeable risks, and any undesirable side-effects, should be minimized
and be acceptable when weighed against the evaluated benefits to the patient and/or user
arising from the achieved performance of the device during normal conditions of use
taking into account the generally acknowledged state of the art.

5.2 Clinical Evaluation

5.2.1 Where appropriate and depending on jurisdictional requirements, a clinical evaluation
may be required. A clinical evaluation should assess clinical data to establish that a
favorable benefit-risk determination exists for the medical device and IVD medical
device in the form of one or more of the following:

- clinical investigation reports (for IVDs, clinical performance evaluation reports)
- literature reports/reviews
- clinical experience

5.2.2 Clinical investigations should be conducted in accordance with the ethical principles that
have their origin in the Declaration of Helsinki. These principles protect the rights, safety
and well-being of human subjects, which are the most important considerations and shall
prevail over interests of science and society. These principles shall be understood,
observed, and applied at every step in the clinical investigation. In addition, some
countries may have specific regulatory requirements for pre-study protocol review,
informed consent, and for IVD medical devices, use of leftover specimens.
5.3 **Chemical, Physical, and Biological Properties**

5.3.1 Regarding chemical, physical, and biological properties of a medical device and IVD medical device, particular attention should be paid to the following:

a) the choice of materials and substances used, particularly as regards toxicity and, where relevant, flammability;

b) the impact of processes on material properties;

c) where appropriate, the results of biophysical or modelling research whose validity of which has been demonstrated beforehand;

d) the mechanical properties of the materials used, reflecting, where appropriate, matters such as strength, ductility, fracture resistance, wear resistance and fatigue resistance;

e) surface properties; and

f) the confirmation that the device meets any defined chemical and/or physical specifications.

5.3.2 Medical devices and IVD medical devices should be designed, manufactured and packaged in such a way as to minimize the risk posed by contaminants and residues to users and patients, taking account of the intended purpose of the medical device and IVD medical device, and to the persons involved in the transport, storage and use of the medical device and IVD medical device. Particular attention should be paid to tissues of users and patients exposed to those contaminants and residues and to the duration and frequency of exposure.

5.3.3 The medical device and IVD medical device should be designed and manufactured in such a way as to reduce, as far as reasonably practicable and appropriate, the risks posed by egress (including leaching and/or evaporation), degradation products, processing residues, etc. Special attention should be given to leaking or leaching of substances, which are carcinogenic, mutagenic or toxic to reproduction.

5.3.4 The medical device and IVD medical device should be designed and manufactured in such a way as to reduce, as far as possible and appropriate, the risks posed by the unintentional ingress of substances into the device, taking into account the medical device and IVD medical device and the nature of the environment in which it is intended to be used.

5.3.5 Medical devices and IVD medical devices and their manufacturing processes should be designed in such a way as to eliminate or to reduce, as far as possible and appropriate, the risk of infection to users and all other persons who may come in contact with the medical device and IVD medical device. The design should:

a) allow for easy and safe handling;
b) reduce, as far as possible and appropriate, any microbial leakage from the medical device and IVD medical device and/or microbial exposure during use;

c) prevent microbial contamination of the medical device and IVD medical device or its content (e.g., specimens); and/or

d) reduce as far as possible and appropriate the risks from unintended exposure (e.g., cuts and pricks (such as needle stick injuries), eye splashes, etc.).

5.4 Sterility, Packaging, and Microbial Contamination

5.4.1 Where necessary, medical devices and IVD medical devices should be designed to facilitate their safe cleaning, disinfection, and/or re-sterilization.

5.4.2 Packaging systems for medical devices and IVD medical devices should maintain the integrity and cleanliness of the product.

5.4.3 Medical devices and IVD medical devices labeled as having a specific microbial state should be designed, manufactured and packaged to ensure that they remain in that state when placed on the market and remain so under the transport and storage conditions specified by the manufacturer.

5.4.4 Medical devices and IVD medical devices, delivered in a sterile state should be designed, manufactured and packaged in accordance with appropriate procedures, to ensure that they are sterile when placed on the market and that, unless the packaging which is intended to maintain their sterile condition is damaged, they remain sterile, under the transport and storage conditions specified by the manufacturer, until that packaging is opened at the point of use. It should be ensured that the integrity of that packaging is clearly evident to the final user.

5.4.5 Medical devices and IVD medical devices labelled as sterile should be processed, manufactured, packaged and, sterilized by means of appropriate, validated methods. The shelf-life of these medical devices and IVD medical devices should be determined by validated methods.

5.4.6 Medical devices and IVD medical devices intended to be sterilized, either by the manufacturer or user, should be manufactured and packaged in appropriate and controlled conditions and facilities.

5.4.7 Where the medical devices and IVD medical devices are provided non sterile and are intended to be sterilized prior to use, the packaging system should minimize the risk of microbial contamination and should be suitable taking account of the method of sterilization indicated by the manufacturer.

5.4.8 For medical devices and IVD medical devices placed on the market in both sterile and non-sterile conditions, the labeling should clearly distinguish between these versions.
5.5 **Considerations of Environment and Conditions of Use**

5.5.1 If the medical device or IVD medical device is intended for use in combination with other medical devices or IVD medical devices and/or equipment, the whole combination, including the connection system should be safe and should not impair the specified performance of the medical device or IVD medical device. Any known restrictions on use applying to such combinations should be indicated on the label and/or in the instructions for use. Any connections which the user has to handle, such as fluid, gas transfer, electrical or mechanical coupling, should be designed and manufactured in such a way as to remove or reduce, as far as possible and appropriate, all possible risks, including incorrect connections or safety hazards.

5.5.2 Medical devices and IVD medical devices should be designed and manufactured in such a way as to remove or reduce, as far as possible and appropriate, the:

a) risks of injury to the users or other persons in connection with its physical and ergonomic features.

b) risks of user error due to the design of the medical device or IVD medical device user interface, ergonomic features, and the environment in which the medical device or IVD medical device is intended to be used.

c) risks connected with reasonably foreseeable external influences or environmental conditions, such as magnetic fields, external electrical and electromagnetic effects, electrostatic discharge, radiation associated with diagnostic or therapeutic procedures, pressure, humidity, temperature, and/or variations in pressure and acceleration.

d) risks associated with the use of the medical device or IVD medical device when it comes into contact with materials, liquids, and substances, including gases, to which it is exposed during normal conditions of use.

e) risks associated with the possible negative interaction between software and the IT environment within which it operates and interacts;

f) environmental risks from unexpected egress of substances from the medical device or IVD medical device during use, taking into account the medical device or IVD medical device and the nature of the environment in which it is intended to be used.

g) the risk of incorrect identification of specimens/samples/data and the risk of erroneous results due to, for example, confusing color and/or numeric coding on specimen receptacles, removable parts and/or accessories used to perform the analysis, test, or assay as intended.
h) the risks of interference with other medical devices or IVD medical devices
 normally used in diagnosis, monitoring or treatment.

5.5.3 Medical devices and IVD medical devices should be designed and manufactured in such
 a way as to remove or reduce, as far as possible and appropriate, the risks of fire or
 explosion during normal use and in single fault condition. Particular attention should be
 paid to medical devices and IVD medical devices whose intended use includes exposure
 to or in association with flammable or explosive substances or substances which could
 cause combustion.

5.5.4 Medical devices and IVD medical devices should be designed and manufactured in such
 a way that adjustment, calibration, and maintenance can be done safely and effectively.
 Specifically,

 a) When maintenance is not possible, for example, with implants, the risks from
 ageing of materials, etc. will be reduced as far as possible and appropriate.

 b) When adjustment and calibration are not possible, for example, with thermometers,
 the risks from loss of accuracy of any measuring or control mechanism are reduced
 as far as possible and appropriate.

5.5.5 Medical devices and IVD medical devices that are intended to be operated together with
 other medical devices or IVD medical devices or products should be designed and
 manufactured in such a way that the interoperability and compatibility are reliable and
 safe.

5.5.6 Any measurement, monitoring or display scale should be designed and manufactured in
 line with ergonomic principles, taking account of the intended purpose, users and the
 environmental conditions in which the medical devices and IVD medical devices are
 intended to be used.

5.5.7 Medical devices and IVD medical devices should be designed and manufactured in such
 a way as to facilitate their safe disposal and the safe disposal of related waste substances
 by the user, patient or other person. The instructions for use should identify safe disposal
 procedures and measures.

5.6 Protection against Electrical, Mechanical, and Thermal Risks

5.6.1 Medical devices and IVD medical devices should be designed and manufactured in such
 a way as to protect users against mechanical risks connected with, for example, resistance
 to movement, instability, and moving parts.

5.6.2 Medical devices and IVD medical devices should be designed and manufactured in such
 a way as to reduce the risks arising from vibration generated by the medical devices or
 IVD medical devices, as far as possible and appropriate, taking account of technical
 progress and of the means available for limiting vibrations, particularly at source, unless
 the vibrations are part of the specified performance.
5.6.3 Medical devices and IVD medical devices should be designed and manufactured in such a way as to reduce the risks arising from the noise emitted as far as possible and appropriate, taking account of technical progress and of the means available to reduce noise, particularly at source, unless the noise emitted is part of the specified performance.

5.6.4 Medical devices and IVD medical devices should be designed and manufactured in such a way as to reduce as far as possible and appropriate, the risk of error when certain parts within the device are intended to be connected or reconnected before or during use.

5.6.5 Medical devices and IVD medical devices (excluding the parts or areas intended to supply heat or reach given temperatures) and their surroundings should not attain potentially dangerous temperatures under normal conditions of use.

5.7 Active Medical Devices and IVD Medical Devices and Medical Devices Connected to Them

5.7.1 For active medical devices and IVD medical devices, in the event of a single fault condition, appropriate means should be adopted to eliminate or reduce, as far as possible and appropriate, consequent risks.

5.7.2 Medical devices and IVD medical devices where the safety of the patient depends on an internal power supply should be equipped with a means of determining the state of the power supply and an appropriate warning or indication for when the capacity of the power supply becomes critical.

5.7.3 Medical devices and IVD medical devices where the safety of the patient depends on an external power supply should include an alarm system to signal any power failure.

5.7.4 Medical devices and IVD medical devices intended to monitor one or more clinical parameters of a patient should be equipped with appropriate alarm systems to alert the user of situations which could lead to death or severe deterioration of the patient's state of health.

5.7.5 Medical devices and IVD medical devices should be designed and manufactured in such a way as to reduce the risks, as far as possible and appropriate, of creating electromagnetic interference which could impair the operation of any devices or equipment in the intended environment.

5.7.6 Medical devices and IVD medical devices should be designed and manufactured in such a way as to provide a level of intrinsic immunity to electromagnetic interference such that is adequate to enable them to operate as intended.

5.7.7 Medical devices and IVD medical devices should be designed and manufactured in such a way as to reduce, as far as possible and appropriate, the risk of accidental electric shocks to the user or any other person, both during normal use of the medical device or IVD medical device and in the event of a single fault condition in the medical device or
IVD medical device, provided the medical device or IVD medical device is installed and maintained as indicated by the manufacturer.

5.7.8 The medical device and IVD medical device should be designed, manufactured and maintained in such a way as to provide an adequate level of intrinsic immunity and/or resilience to deliberate attempts to gain unauthorized access to its safety related functions, its patient related data, its communication protocols and its ability to function as part of a connected system which enables it to operate as intended.

5.7.9 Medical devices and IVD medical devices should be designed and manufactured in such a way as to protect, as far as possible and appropriate, against unauthorized access that could hamper the device from functioning as intended or impose a safety concern.

5.8 Medical Devices and IVD Medical Devices that Incorporate Software or are Software as a Medical Device

5.8.1 Medical devices and IVD medical devices that incorporate electronic programmable systems, including software, or are software as a medical device, should be designed to ensure accuracy, reliability, precision, safety, and performance in line with their intended use. In the event of a single fault condition, appropriate means should be adopted to eliminate or reduce, as far as possible and appropriate, consequent risks or impairment of performance.

5.8.2 For medical devices and IVD medical devices that incorporate software or are software as a medical device, the software must be developed, manufactured and maintained in accordance with the state of the art taking into account the principles of development life cycle (e.g., rapid development cycles, frequent changes, the cumulative effect of changes), risk management (e.g., changes to system, environment, and data), including information security (e.g., safely implement updates), verification and validation (e.g., change management process).

5.8.3 Software that is intended to be used in combination with generic computing platforms should be designed and developed taking into account the platform itself (e.g. size and contrast ratio of the screen, connectivity, memory, etc.) and the external factors related to their use (varying environment as regards level of light or noise).

5.8.4 Manufacturers should set out minimum requirements concerning hardware, IT networks characteristics and IT security measures, including protection against unauthorized access, necessary to run the software as intended.
5.9 **Medical Devices and IVD Medical Devices with a Diagnostic or Measuring Function**

5.9.1 Medical devices and IVD medical devices with a diagnostic or measuring (including monitoring) function should be designed and manufactured in such a way as to provide, among other performance characteristics, sufficient accuracy, precision and stability for their intended purpose, based on appropriate scientific and technical methods.

a) Where applicable, the limits of accuracy should be indicated by the manufacturer.

b) Whenever possible, values expressed numerically should be in commonly accepted, standardized units, and understood by users of the medical device or IVD medical device. While generally supporting the convergence on the global use of internationally standardized measurement units, considerations of safety, user familiarity and established clinical practice may justify the use of other recognized measurement units.

c) The function of the controls and indicators should be clearly specified on the medical device and IVD medical device. Where a medical device or IVD medical device bears instructions required for its operation or indicates operating or adjustment parameters by means of a visual system, such information should be understandable to the user and, as appropriate, the patient.

5.10 **Labeling and Instructions for Use**

The following principles are the general requirements for labeling and instructions for use. For additional guidance on the contents of the label and instructions for use please refer to GHTF/SG1/N70/2011.

5.10.1 Each medical device and IVD medical device should be accompanied by the information needed to identify the medical device or IVD medical device and its manufacturer, and by any safety and performance information relevant to the user, or any other person, as appropriate. Such information may appear on the medical device/IVD medical device itself, on the packaging or in the instructions for use, and should be easily understood.

5.10.2 The medium, format, content, legibility, and location of the label and instructions for use should be appropriate to the particular medical device and IVD medical device, its intended purpose and the technical knowledge, experience, education or training of the intended user(s). Instructions for use should be written in terms readily understood by the intended user and, where appropriate, supplemented with drawings and diagrams. If instructions for use are insufficient, appropriate training should be provided. Some medical devices and IVD medical devices should include separate information for the professional user and the lay person.
5.10.3 The contents of the label and instructions for use should meet the requirements of the Regulatory Authority having jurisdiction.

5.11 Protection against Radiation

5.11.1 Medical devices and IVD medical devices should be designed, manufactured and packaged in such a way that exposure of users or other persons to radiation is reduced as far as possible and appropriate and in a manner that is compatible with the intended purpose, whilst not restricting the application of appropriate specified levels for diagnostic purposes.

5.11.2 The operating instructions for medical devices and IVD medical devices emitting hazardous or potentially hazardous radiation should contain detailed information as to the nature of the emitted radiation, the means of protecting the user, patients, and others, and ways of avoiding misuse and of reducing the risks inherent to transport, storage and installation, as far as possible and appropriate.

5.11.3 Where medical devices and IVD medical devices are intended to emit hazardous, or potentially hazardous, ionizing and/or non-ionizing radiation, they should be fitted, where possible, with visual displays and/or audible warnings of such emissions.

5.11.4 Medical devices and IVD medical devices should be designed and manufactured in such a way that exposure of users and other persons to the emission of unintended, stray or scattered radiation is reduced as far as possible.

5.11.5 Where possible and appropriate, methods should be selected which reduce the exposure to radiation of users and other persons who may be affected.

5.11.6 For medical devices and IVD medical devices emitting hazardous or potentially hazardous radiation and that require installation, information regarding the acceptance and performance testing, the acceptance criteria, and the maintenance procedure should be specified in the operating instructions.

5.11.7 When medical devices and IVD medical devices are intended to emit hazardous, or potentially hazardous, ionizing and/or non-ionizing radiation, accessible to user, they should, as far as possible and appropriate, be designed and manufactured in such a way as to ensure that the quantity, geometry, energy distribution (or quality), and other key characteristics of the radiation emitted can be controlled and adjusted and, where appropriate, monitored during use. Such medical devices and IVD medical devices should be designed and manufactured to ensure reproducibility of relevant variable parameters within an acceptable tolerance.

5.12 Protection against the Risks posed by Medical Devices and IVD Medical Devices intended by the Manufacturer for use by Lay Persons

5.12.1 Medical devices and IVD medical devices for use by lay persons (such as self-testing or near-patient testing) should be designed and manufactured in such a way that they
perform appropriately for their intended use/purpose taking into account the skills and the means available to lay persons and the influence resulting from variation that can be reasonably anticipated in the lay person's technique and environment. The information and instructions provided by the manufacturer should be easy for the lay person to understand and apply when using the medical device or IVD medical device and interpreting the results.

5.12.2 Medical devices and IVD medical devices for use by lay persons (such as self-testing or near-patient testing) should be designed and manufactured in such a way as to:

a) ensure that the medical device and IVD medical device can be used safely and accurately by the intended user per instructions for use. If instructions for use are insufficient, appropriate training should be provided.

b) reduce, as far as possible and appropriate, the risk of error by the intended user in the handling of the medical device or IVD medical device and, if applicable, in the interpretation of the results.

5.12.3 Medical devices and IVD medical devices for use by lay persons (such as self-testing or near-patient testing) should, where appropriate, include means by which the lay person:

a) can verify that, at the time of use, the medical device or IVD medical device will perform as intended by the manufacturer, and

b) is warned if the medical device or IVD medical device has failed to operate as intended or to provide a valid result.

5.13 Medical Devices and IVD Medical Devices Incorporating Materials of Biological Origin

5.13.1 For medical devices and IVD medical devices that include tissues, cells, or substances of animal origin, or their derivatives, which are non-viable or rendered non-viable the following should apply:

a) where feasible, taking into account the animal species, tissues and cells of animal origin, or their derivatives, should originate from animals that have been subjected to veterinary controls that are adapted to the intended use of the tissues. Information on the geographical origin of the animals may need to be retained by manufacturers depending on jurisdictional requirements.

b) sourcing, processing, preservation, testing and handling of tissues, cells and substances of animal origin, or their derivatives, should be carried out so as to provide safety for patients, users and, where applicable, other persons. In particular, safety with regards to viruses and other transmissible agents should be addressed by implementation of validated state of the art methods of elimination or inactivation in the course of the manufacturing process, except when the use of such methods would lead to unacceptable degradation compromising the medical device or IVD medical device.
5.13.2 For Regulatory Authorities, which regulate products manufactured utilizing tissues, cells, or substances of human origin or their derivatives as medical devices or IVD medical devices, the following should apply:

a) donation, procurement and testing of the tissues and cells should be done in accordance with jurisdictional requirements; and

b) processing, preservation and any other handling of those tissues and cells or their derivatives should be carried out so as to provide safety for patients, users and, where applicable, other persons. In particular, safety with regard to viruses and other transmissible agents should be addressed by appropriate methods of sourcing and by implementation of validated state of the art methods of elimination or inactivation in the course of the manufacturing process.

5.13.3 For medical devices and IVD medical devices manufactured utilizing biological substances other than those referred to in Sections 5.13.1 and 5.13.2, the processing, preservation, testing and handling of those substances should be carried out so as to provide safety for patients, users and, where applicable, other persons, including in the waste disposal chain. In particular, safety with regards to viruses and other transmissible agents should be addressed by appropriate methods of sourcing and by implementation of validated state of the art methods of elimination or inactivation in the course of the manufacturing process.

5.14 Medical Devices Incorporating a Substance Considered to be a Medicinal Product/Drug

These essential principles are not intended to provide definitions for combination products since these definitions are yet to be harmonized and how combination products are handled varies among different regulatory authorities.

5.14.1 Where a medical device incorporates, as an integral part, a substance which, if used separately may be considered to be a medicinal product/drug as defined in the relevant legislation that applies in that Regulatory Authority and which is liable to act upon the body with action ancillary to that of the medical device, the safety and performance of the medical device as a whole should be verified, as well as the identify, safety, quality and efficacy of the substance in the specific combination product if dose, mechanism of action and intended use of the substance is similar to that of medicinal product when used separately.
6.0 Essential Principles Applicable to Medical Devices other than IVD

6.1 Chemical, Physical and Biological Properties

6.1.1 With regards to chemical, physical, and biological properties of a medical device, particular attention should be paid to the compatibility between the materials and substances used and biological tissues, cells and body fluids, taking account of the intended purpose of the device and, where relevant, absorption, distribution, metabolism and excretion.

6.1.2 Medical devices should be designed and manufactured in such a way that they can be used safely with the materials, substances, and gases, with which they enter into contact during their intended use; if the devices are intended to administer medicinal products they should be designed and manufactured in such a way as to be compatible with the medicinal products concerned in accordance with the provisions and restrictions governing those medicinal products and that the performance of both the medicinal products and of the devices is maintained in accordance with their respective indications and intended use.

6.1.3 Medical devices should be designed and manufactured in such a way as to reduce the risks, as far as possible and appropriate, linked to the size and the properties of particles which are or can be released into the patient's or user's body, unless they come into contact with intact skin only. Special attention should be given to nanomaterials.

6.2 Protection against Radiation

6.2.1 Medical devices emitting ionizing radiation intended for diagnostic radiology should be designed and manufactured in such a way as to achieve an image and/or output quality that are appropriate to the intended medical purpose whilst minimizing radiation exposure of the user and other persons.

6.2.2 Medical devices should be designed to accurately estimate, monitor, display, report, and record dose from an exam or treatment.

6.3 Particular Requirements for Implantable Medical Devices

6.3.1 Implantable medical devices should be designed and manufactured in such a way as to remove or minimize the risks, as far as possible and appropriate, connected with medical treatment, e.g. the use of defibrillators, high-frequency surgical equipment.
6.3.2 Active programmable implantable medical devices should be designed and manufactured in a manner that allows the unequivocal identification of the device without the need for a surgical operation.

6.4 Protection against the Risks Posed to the Patient or User by Medical Devices

6.4.1 Medical devices for supplying the patient with energy or substances should be designed and manufactured in such a way that the amount to be delivered can be set and maintained accurately enough to ensure the safety of the patient, user, and others.

6.4.2 Medical devices should be fitted with the means of preventing and/or indicating any inadequacies in the amount of energy delivered or substances delivered which could pose a danger. Devices should incorporate suitable means to prevent, as far as possible, the accidental release of dangerous levels of energy or substances from an energy and/or substance source.

7.0 Essential Principles Applicable to IVD Medical Devices

The essential design and manufacturing principles listed in this Section of the document are additional to the essential principles of safety and performance listed in Section 5. These essential principles are applicable to only IVD medical devices.

7.1 Performance Characteristics

7.1.1 IVD medical devices should achieve the analytical and clinical performances, as stated by the manufacturer that are applicable to the intended use/purpose, taking into account the intended patient population, the intended user, and the setting of intended use. These performance characteristics should be established using suitable, validated, state of the art methods. For example:

- The analytical performance can include, but is not limited to,
 - Traceability of calibrators and controls
 - Accuracy of measurement (trueness and precision)
 - Analytical Sensitivity/Limit of detection
 - Analytical specificity
 - Measuring interval/range
 - Specimen stability

- The clinical performance, such as diagnostic/clinical sensitivity, diagnostic/clinical specificity, positive predictive value, negative predictive value, likelihood ratios, and expected values in normal and affected populations.
7.1.2 Where the performance of an IVD medical device depends on the use of calibrators or control materials, the traceability of values assigned to such calibrators or control materials should be ensured through available reference measurement procedures or available reference materials of a higher order.

7.1.3 Wherever possible, values expressed numerically should be in commonly accepted, standardized units and understood by the users of the IVD medical device.

7.1.4 The performance characteristics of the IVD medical device should be evaluated according to the intended use statement which may include the following:

a) intended user, for example, lay person, laboratory professional;

b) intended use environment, for example, patient home, emergency units, ambulances, healthcare centers, laboratory;

c) relevant populations, for example, pediatric c.f. adult, pregnant women, individuals with signs and symptoms of a specific disease, patients undergoing differential diagnosis, blood supply screening, etc. Populations evaluated should represent, where appropriate, ethnically and genetically diverse populations so as to be representative of the population(s) where the device is intended to be marketed. For infectious diseases, the populations selected should also have similar prevalence rates.

7.2 Chemical, Physical and Biological Properties

7.2.1 With regards to chemical, physical, and biological properties for IVD medical devices, attention should be paid to the possibility of impairment of analytical performance due to physical and/or chemical incompatibility between the materials used and the specimens, analyte or marker to be detected (such as biological tissues, cells, body fluids and micro-organisms), taking account of the intended purpose of the device.
Annex A: Use of Standards in Meeting Essential Principles

Consensus standards that contain detailed requirements may be used to demonstrate conformance with the essential principles of safety and performance. Such consensus standards provide a greater level of detail and specificity than can be expressed in the essential principles. The essential principles of safety and performance and their related standards can be useful in the fulfilment of pre-market and post-market requirements throughout the lifecycle of medical devices and IVD medical devices. It is important to note that, the use of specific consensus standards, depends on the requirements of the Regulatory Authorities having jurisdiction. In addition, some Regulatory Authorities may have additional requirements outside of these essential principles of safety and performance.

A. General Approach to Using Standards

The essential principles of safety and performance are the general, high-level criteria that when met indicate that a medical device and IVD medical device is safe and effective. Regulatory requirements expect that a medical device and IVD medical device be safe and effective during its lifecycle and so conformity with the essential principles of safety and performance should be achieved throughout the lifecycle of the medical device and IVD medical device. This usually means that their medical device and IVD medical device should be:

a) designed to be safe and effective, complying with the essential principles of safety and performance,

b) manufactured to maintain the design characteristics, and

c) used in a way that maintains the design characteristics.

In the case of findings while the medical device or IVD medical device is in the post-production phase, there is a need to evaluate the production and post-production information for relevancy to safety and performance and a redesign might be needed to make the medical device or IVD medical device compliant again with the essential principles of safety and performance.

It is important to note that it is not possible to assure an acceptable level of safety and performance in the lifecycle by simply being compliant with one or more standards at one time. The requirements in a single standard typically do not meet all the specific parts of a given essential principle as related to a given medical device or IVD medical device. A process for continuous compliance is required and the expectation is that this is achieved through the use of a robust quality management system and a risk management process.

B. Use of Standards by Regulatory Authorities having Jurisdiction

In some countries, Regulatory Authorities having jurisdiction acknowledge the use of voluntary consensus standards as one means of demonstrating compliance with relevant essential principles of safety and performance of medical devices and IVD medical devices. In addition, use of consensus standards can promote harmonization among Regulatory Authorities in the regulation of medical devices and IVD medical devices.

Standards suitable to address the essential principles should be based on:
a) a close relationship of the scope of the standard to one or more of the essential principles,
b) the clarity and completeness of the technical requirements contained in the standard as it
relates to a specific essential principle,
c) the existence of test methods for determining compliance with each of the technical
requirements in the standard, and
d) the definition of clear acceptance criterion for determining that each technical
requirement is met.

These standards should, wherever possible, be standards incorporating the thinking of the global
marketplace and help support the development of consistent expectations between Regulatory
Authorities having jurisdiction. In the absence of international consensus standards, it may be
appropriate for Regulatory Authorities having jurisdiction to accept the use of regional or
national consensus standards or industry standards. Regulatory Authorities having jurisdiction
typically establish and maintain a list of accepted standards that they find suitable for
demonstrating conformance to these essential principles.

C. Assessing the Conformity of a Medical Device and IVD Medical Device

Conformity assessment is the systematic examination of records and procedures undertaken by
the manufacturer, under requirements established by the Regulatory Authority having
jurisdiction, to determine that a medical device or IVD medical device conforms to the essential
principles and is thereby safe and performs as intended. In assessing the conformity of a medical
device with the essential principles, standards or parts of several standards may be utilized and
combined in a way that is appropriate for the specific medical device or IVD medical device. In
some cases, the use of parts of standards and/or combinations of standards should be acceptable
for conformity assessment purposes.

If the combination of standards does not cover all the necessary essential principles of safety and
performance for a specific medical device or IVD medical device, other means of demonstrating
conformance to the essential principles should be used, such as the creation of valid scientific
evidence for the medical device or IVD medical device and essential principle in question. In
addition, the Regulatory Authority having jurisdiction may have additional requirements that are
beyond those contained in the standard. In some cases, even if there is an available standard,
valid scientific evidence may be used in lieu of using any standard to demonstrate conformance
to the essential principles.

D. Risk Management within Consensus Standards

Risk management is increasingly becoming a key principle within standards. For example, many
medical device consensus standards include risk management principles in the application of
these standards during the medical device and IVD medical device lifecycle. The use of risk
management principles in these consensus standards allows these standards to remain relevant
and helpful as technology advances. Application of risk management principles within
consensus standards requires the medical device and IVD medical device manufacturer to
consider the implications of design and manufacturing decisions made during the lifecycle of the
medical device. Documentation of these risk management activities can provide a justification
that manufacturers design and manufacturing decisions meet a Regulatory Authority’s
requirements for marketing a medical device and IVD medical device.
Annex B: Guidance on Essential Principles

The table below is intended to provide general guidance for meeting the essential principles of safety and performance. The standards and guidances below are not intended to encompass all of the requirements to meet a particular essential principle, but rather provide some overarching guidance. Depending on the specific medical device or IVD medical device additional product specific standards may need to be used. In addition, the requirements of the particular Regulatory Authority having jurisdiction must also be taken into consideration.
<table>
<thead>
<tr>
<th>Essential Principle</th>
<th>Guidances</th>
<th>Relevant Standards</th>
</tr>
</thead>
</table>
GHTF/SG3/N17:2008 *Quality Management System – Medical Devices – Guidance on the Control of Products and Services Obtained from Suppliers*
GHTF/SG3/N15R8 *Implementation of Risk Management Principles and Activities within a Quality Management System*
ISO 14971
ISO 23640
CLSI EP25 |
| 5.2 | Declaration of Helsinki
GHTF/SG5/N1R8:2007 *Clinical Evidence – Key Definitions and Concepts*
GHTF/SG5/N2R8:2007 *Clinical Evaluation*
GHTF/SG5/N3:2010 *Clinical Investigations*
GHTF/SG5/N6:2012 *Clinical Evidence for IVD Medical Devices - Key Definitions and Concepts*
GHTF/SG5/N7:2012 *Clinical Evidence for IVD Medical Devices - Scientific Validity Determination and Performance Evaluation.*
GHTF/SG5/N8:2012 *Clinical Performance Studies for In Vitro Diagnostic Medical Devices* | ISO 14155 |
| 5.3 | | ISO 10993
IEC 60601
IEC 61010 |
| 5.4 | | ISO 11135
ISO 11137
ISO 11138
ISO 11140
ISO 11607
ISO 10993
ISO 11737
ISO 13408
ISO 14644
ISO 14937
ISO 17664
ISO 17665 |
<table>
<thead>
<tr>
<th>Section</th>
<th>References</th>
</tr>
</thead>
</table>
| 5.5 | IEC 60601
IEC 61010
IEC 62366-1
IEC 62366-2
IEC 80001
ISO 80369
IEC 62304 |
| 5.6 | IEC 60601
IEC 61010 |
| 5.7 | IEC 60601
IEC 61010 |
| 5.8 | IMDRF/SaMD WG/N41 FINAL:2017 Software as a Medical Device (SaMD): Clinical Evaluation
IMDRF/SaMD WG/N23 FINAL:2015 Software as a Medical Device (SaMD): Application of Quality Management System
IMDRF/SaMD WG/N12 FINAL:2014 “Software as a Medical Device”: Possible Framework for Risk Categorization and Corresponding Considerations
IMDRF/SaMD WG/N10 FINAL:2013 Software as a Medical Device (SaMD): Key Definitions |
| 5.9 | IEC 60601
IEC 61010
IEC 62366-1
IEC 62366-2 |
| 5.10 | GHTF/SG1/N70:2011 Label and Instructions for Use for Medical Devices |
| 5.11 | IEC 60601
IEC 61010 |
| 5.12 | IEC 62366-1
IEC 62366-2 |
| 5.13 | ISO 22442 |
| 5.14 | Refer to jurisdictional requirements. |
| 6.1 | ISO 10993
IEC 60601 |
<p>| 6.2 | IEC 60601 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Requirements depend on the type of implantable device.</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td></td>
<td>IEC 60601</td>
</tr>
<tr>
<td>7.1</td>
<td></td>
<td>CLSI EP05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLSI EP06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLSI EP07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLSI EP12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLSI EP17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLSI EP21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLSI EP25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLSI EP28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ISO 23640</td>
</tr>
<tr>
<td>7.2</td>
<td></td>
<td>ISO 10993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IEC 61010</td>
</tr>
</tbody>
</table>