AI/ML: Needs and Challenges - Regulator’s Perspective

IMDRF 2022

Johan Ordish

12 September
AIaMD – Sailing the boat while we build it
AI as a medical device (AlaMD)

AlaMD as a subset of SaMD

Bulk of the UK AlaMD market is orientated toward diagnosis or triaging (~ 80%)

Avoid ‘AI exceptionalism’

Requires the best of medical device regulation and the best of data science
Final Document

IMDRF/AIMD WG/N67

Machine Learning-enabled Medical Devices: Key Terms and Definitions
Good Machine Learning Practice

Good Machine Learning Practice for Medical Device Development: Guiding Principles
October 2021

Guidance
Good Machine Learning Practice for Medical Device Development: Guiding Principles
Published 27 October 2021

Multi-Disciplinary Expertise Is Leveraged Throughout the Total Product Life Cycle

Good Software Engineering and Security Practices Are Implemented

Clinical Study Participants and Data Sets Are Representative of the Intended Patient Population

Training Data Sets Are Independent of Test Sets

Selected Reference Datasets Are Based Upon Best Available Methods

Model Design Is Tailored to the Available Data and Reflects the Intended Use of the Device

Focus Is Placed on the Performance of the Human-AI Team

Testing Demonstrates Device Performance During Clinically Relevant Conditions

Users Are Provided Clear, Essential Information

Deployed Models Are Monitored for Performance and Re-training Risks Are Managed
AIaMD Challenges

AIaMD can (but need not always) provide challenges over and above SaMD, namely:

A. Interpretability of AIaMD
B. Evidencing AIaMD
C. Adaptivity of AIaMD
AIaMD Interpretability (1)

Data modeling culture v algorithmic modeling culture (Breiman 2001)

Two primary challenges of uninterpretable AIaMD:

1. Linking to clinical / scientific evidence or otherwise validating the model
2. Human factors

 Performance of the Human-AI team
AlaMD Interpretability (2) Human Factors

IEEE P7001 - TRANSPARENCY OF AUTONOMOUS SYSTEMS

Scope: This standard describes measurable, testable levels of transparency, so that autonomous systems can be objectively assessed and levels of compliance determined.

Guidance on applying human factors and usability engineering to medical devices including drug-device combination products in Great Britain

The Lancet Digital Health
Volume 11, Issue 21, November 2021, Pages e745-e750

Viewpoint:
The false hope of current approaches to explainable artificial intelligence in health care

Marzieh Ghassemi PhD a b, Luke Oxlade-Rayner c, Andrew L. Beam PhD a b

Consensus Statement | Published: 18 May 2022

Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI

Raphte Vassey 1, Myura Napendaran, Bruce Campbell, David A. Clifton, Gary S. Collins, Spiros Denaxas, Alesair K. Denniston, Livia Fas, Bart Geerts, Mudathir Ibrahim, Xiangnan Liu, Bilal A. Mateen, Piyush Mathur, Melissa D. McCracken, Lauren Morgan, Johan Ordish, Campbell Rogers, Suchi Saria, Daniel S. W., Ting, Peter Watkinson, Wim Weber, Peter Wheatstone, Peter McCulloch & the DECIDE-AI expert group

Nature Medicine 28, 924–933 (2022) | Cite this article

BS EN 62366-1:2015+A1:2020

Medical devices. Application of usability engineering to medical devices
Evidencing AIaMD (1)

AIaMD can provide the following challenges:

- Performance of the human-AI team
- Linking to clinical or scientific evidence
- Reference standard ≠ gold standard
- Difficult to claim equivalence between models for clinical evidence (Annex A, MEDDEV 2.7/1 rev 4)
- Representativeness of training data / generalizability / applicability of models
- Reproducibility
- Calibration of models
- Bias
Evidencing AlaMD (2) Bias

Three primary issues from a medical device POV:

1. Unrepresentative or skewed data may lead to lower performance in subpopulations
2. Representative data but without context may lead to poorer outcomes
3. AlaMD may not serve the needs of communities in which it is deployed if those communities' needs are not understood

Reading Race: AI Recognizes Patient’s Racial Identity In Medical Images

Evidencing AIaMD (3) Bias

BayesBoost: Identifying and Handling Bias Using Synthetic Data Generators

Barbara Draghi
Zhenchen Wang
Puja Myles

Medicine and Healthcare products Regulatory
Allan Tucker
Bruxel University London, UK

Press release

Review launched into the health impact of potential bias in medical devices

Independent review will look at potential bias in items like oxygen measuring devices and the impact on patients from different ethnic groups.

STANDING Together
Developing STANdards for data Diversity, INclusivity and Generalisability
AIaMD Adaptness (1) Distinguishing Concepts

Distinguish between at least four different issues:

1. Static devices
2. Batch training
3. ‘Individualised’ models
4. Continuous learning on streaming data
AIaMD Adaptivity (2) Change Management

Different aspects of change that need consideration:

- Assuring intentional change made by the manufacturer
 - Non-linearity of change
 - Bugs
- Changes in deployment
 - Generalisability
 - Localisation
- Changes to the environment
Artificial Intelligence and Machine Learning for In Vitro Diagnostics

Developing metrics that could signal significant changes in adaptive learning AI algorithms

Project led by
The Medicines and Healthcare products Regulatory Agency
AIaMD: What’s needed?

- The critical need for robust standards for AIaMD – legislation and guidance only get us so far
- Harmonisation of regulation at an international level
- The state of the art for AIaMD is still settling
- Different core AI challenges are at different levels of maturity
- Complexity of the AI standardisation landscape internationally