

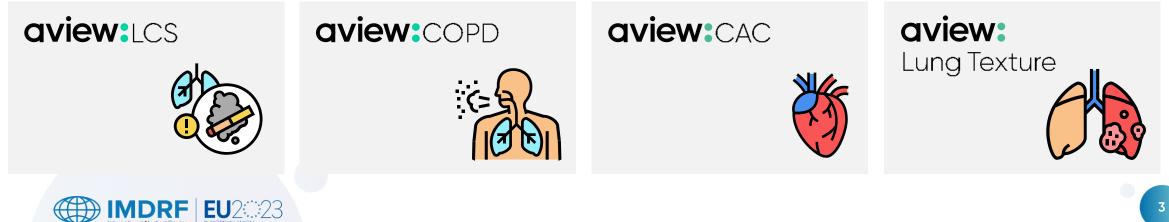
European Union

PMS for Al Medical Devices

Hae Ung Lee, Ph.D. Coreline Soft Co., Ltd. March 28. 2023

OVERVIEW

Company Introduction	03
Product Overview	04
Worldwide registration status	06
PMS for AI Medical Devices	07
Key actions for PMS	07
How to conduct	08
Al Software	11
Continuous Learning Capabilities	11
Performance in Real World Setting	14



> Leading large scale AI deployment

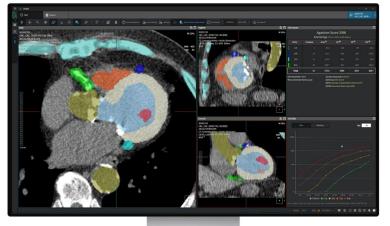
> Product Overview – Clinical Products

Clinical products I

aview:LCS

Key Features

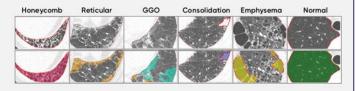
- 1. Nodule CAD Sensitivity: 0.97, Specificity: 0.7644
- 2. F/up Mode(Automatic Nodule Matching)
- 3. Lung RADS(1.0/1.1)
- 4. Volumetric measurement & Volume Doubling Time(VDT)
- 5. Brock Score calculation
- 6. EUPS compliance


Key Features

- 1. Fully automated processing
- 2. Phenotyping
 - Emphysema Airway
 - Fissure Integrity Vessel

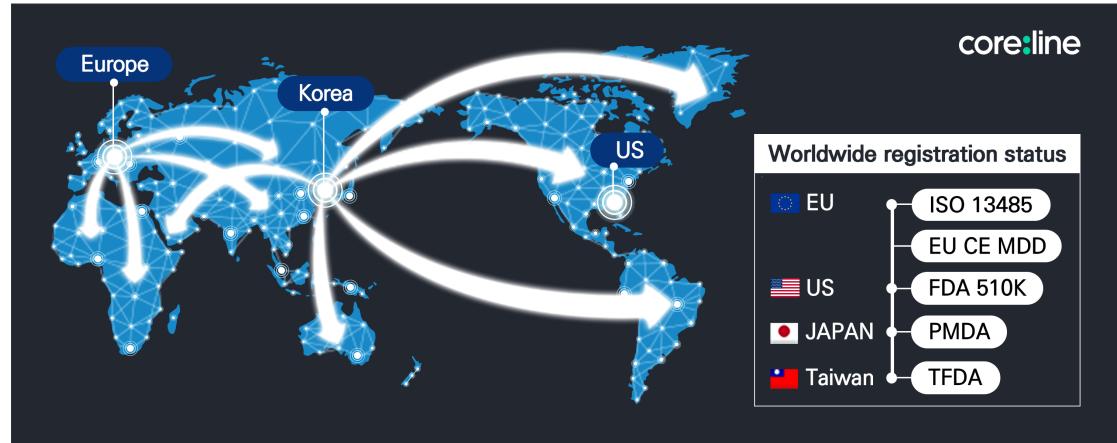
Clinical products II

Key Features


- 1. Fully Automated and Fast
- 2. Scores on each Vessel
- 3. Agatston, Volume and Mass Score

aview:Lung Texture

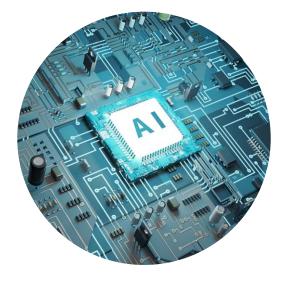
Key Features


- 1. Fully Automated using Al
- 2. Lung/Lobe segmentation based on AI
- 3. 6 Patterns Classification

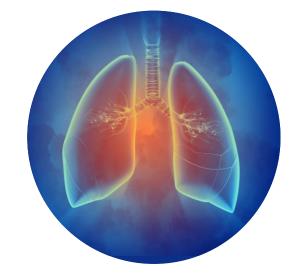
Company Introduction

> Worldwide registration status

> Key actions for PMS



- Real world Data analysis
 - Comply with regulatory requirements
 - Safety and effectiveness
- Literature search
- Cybersecurity information sharing networks searching


> How to conduct

02 Implement the plan

03 Generate PMS report based on the findings

> PMS Plan

- Collecting and analyzing data
- Following up on collected complaint
- Communicating information to regulators and users
- Taking corrective actions on devices
- Producing a PMCF (Post-Market Clinical Following-up) plan or a rationale for why PMCF is not required

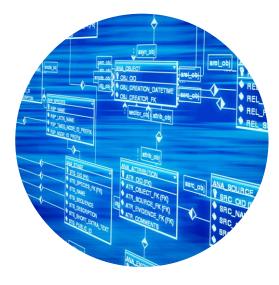
> Reporting

Region	Report Type	Details
US	Periodic Adverse Drug Experience Report (PADER/PAER)	Required by FDA
	Post-Market Surveillance Report (PMSR)	Required for low-risk Class I devices
EU	Periodic Safety Update Report (PSUR)	Required for Class IIa, Class Iib, and Class III devices
Korea	Report on production and export performance of medical devices	Reported annually
	Report on supply history of medical devices	Reported annually

> Continuous Learning Capabilities

Pre-market assessment is no longer sufficient

Control the learning process and respective changes

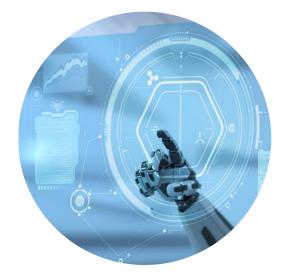


> Change Notification

Addition or reduction of input data type to generate the same output

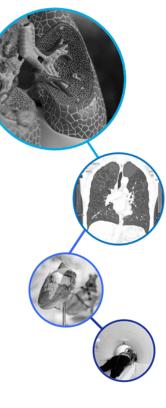
Output results based on the approved input parameters (including changes for interpretation)

Approved workflow


> Change Notification related to a continuous learning algorithm

Exclusion/inclusion criteria for input data

Defined boundaries



Baseline performance specifications

> Performance in Real World Setting

- High quality machine learning from private datasets
- But, limited learning data



NELSON Dutch-Belgian Lung Cancer Screening Trial	Lung Cancer Screeining CT dataset
UKLS UKLung Screening Trial	Lung Cancer Screening CT dataset 3,000 cases
Russian LS Moscow Lung Screen Trial	LungCancer Screening CT dataset 2,000 cases
SNUH 서울대학교병원,Collecting	- 高地부 전이암 - CT dataset 12,200 cases
(B) Russian LS (Korean Obstructive Lung Disease Cohort)	• 17개 병원 • 吾半 CT dataset 477 cases
ILD Project (10개 병원, Collecting)	- 8개 병원 - ILD CT dataset 762 cases
(B) ROBINSCA (Risk Or Benefit IN Screening for Cardiovascular Diseases)	Coronary Artery Calcification CT dataset (2,000 cases)
Dr. Answer (서울아산병원, 분당서울대병원, 신존세브란스병원)	Coronary Artery Calcification CT dataset (8,000 cases)
RT-ACS Project	• 방사선중양치료계획 Multi-Contouring • CT dataset 800 cases (목표)

> Performance in Real World Setting

- **V** Different setting from pre-market assessment
 - Different Data set
 - Uncontrolled clinical environment

THANK YOU / QUESTIONS

https://www.corelinesoft.com/en

haeung.lee@corelinesoft.com

Disclaimer

This document was produced by the International Medical Device Regulators Forum. There are no restrictions on the reproduction or use of this document; however, incorporation of this document, in part or in whole, into another document, or its translation into languages other than English, does not convey or represent an endorsement of any kind by the International Medical Device Regulators Forum.

Copyright 2021 by the International Medical Device Regulators Forum.

