

Leveraging Automation to Enhance PMS Data Integration

Manoja Ranawake

Becton Dickinson (BD)

VP Quality Management & Regulatory Affairs – EMEA & IP OUS

BD Corporate Overview

70,000 +

BD associates worldwide 3 Segments, 9 Business Units

34B +

devices made annually: RUO, LUO, IVDs, MDs, Pharma Devices Class I to III implantables MDs

190 +

countries served

Regulated Countries

112 with 59 official languages

\$1B+

annual R&D investment & five global enterprise R&D centers of excellence

31,000 +

active patents

2,000+

data scientists and software engineers

~\$1B

pharmacy and lab robotics business

winning discoveries

BD technology critical in many **Nobel Prize**

"BD is a dynamic global medical technology leader that touches billions of patients around the world."

Industry Challenges in Managing PMS Data

PMS Data Sources

- Digital tools are transforming post-market surveillance into a proactive discipline.
- However, companies often use multiple systems to track different aspects of product safety & performance.
- This fragmentation creates silos, limits visibility, and complicates signal detection.

Industry Challenges

- Fragmented systems with large volume and complex data
- Regulatory pressure to maintain compliance for traceable, auditable, and timely post-market data.
- Need to balance costefficiency with the need for robust surveillance capabilities

Strategic Goals

- Unified Surveillance: Create a single view of product postmarket performance.
- Automated Observations: Enable real-time, consistent data capture.
- Early Signal Detection:
 Identify emerging issues faster.
- Regulatory Alignment: Meet global post-market surveillance requirements.

Considerations for Data Integration

Stepped Approach?

- You already have multiple systems (e.g., complaint and service systems) that capture valuable data.
- You can use automation tools (like bots) to bridge gaps between systems.
- You want to minimize cost and disruption while still improving data flow and visibility.
- You're aiming for incremental improvements and learning before committing.

New Digital Tool?

- Your current systems are incompatible, outdated, or lack key functionality (e.g., analytics, traceability).
- You need to meet complex regulatory requirements that demand unified, auditable data.
- You're scaling globally and need a centralized platform for consistent surveillance across regions.
- You want to leverage AI or machine learning for predictive insights, which may require structured, integrated data.

Hybrid Approach?

- Start with automation and integration of existing systems.
- Use that experience to define requirements for a future-ready platform.
- Transition gradually to a new tool if and when the business case supports it.
- Can Al tools be used to aid current systems?

BD Case Study – Automation to Bridge PMS Systems

- BD uses two major systems for post-market feedback:
 - Complaint System Proactive, customerinitiated reports.
 - Service System Reactive, engineerrecorded service events and spare parts usage.
- Each system tracks different process elements and requires different data inputs.
- Both systems provide valuable post-market data (~35k data points annually for a single product line) and must be monitored together.

- BD deployed a bot to transfer structured data from the Service System to the Complaint System.
- The bot helps bridge the gap without a full system overhaul.
- Human oversight is still required, especially for contextual observations.

Outcomes & Benefits

- Proactive Risk Management: Enables earlier detection and continuous improvement.
 - Linking the systems utilizing the bot enabled service data to feed into the PMS reviews
- Holistic Insights: Combines customer feedback with field service intelligence.
- Cost Efficiency: Lower initial cost with bot vs. building a new system.

- Cost Trade-offs: Initial savings with bot, but increased resource needs for manual oversight.
- Data Standardisation/Management: Systems record different types of data; manual enrichment is needed so can be difficult to make fully automated.
- Change Management: Training and workflow adaptation required.
- Scalability: Infrastructure and process must support future automation and analytics and roll-out to other business areas

Key Learnings and Considerations

How Can Al Enhance PMS Processes? – Industry/BD Example:

- Case Creation: Al helping to translate local-language complaints into globally understandable formats.
- Customer Communication: All used to generate problem summaries from customer interactions.
- Reportability Decisions: Al analyses data against vigilance criteria.
- IMDRF Code Selection: All assists in coding for adverse events and trending.
- Predictive Analytics and Signal Detection: All can identify emerging safety signals and trends from large datasets, enabling early intervention before issues escalate.
- Automating Complaint Handling and Intake: All can automatically classify complaints as valid or invalid, flag missing information, and triage them for follow.-up, reducing manual workload and errors.
- Enhancing Proactive PMS: Al supports proactive data collection beyond traditional complaint channels, including user interaction data, device usage patterns, and clinical outcomes, including published data.

ありがとう Thank you – Questions?

